





### TASK 1

Complete the table below to calculate the speed at which each of the planets in the Solar System is travelling.

## ASSUMPTION:

For this activity, you will assume that all planets travel in circular orbits around the Sun. In reality, their orbits are elliptical.

## YOU WILL NEED:

- The Planet Datasheet
- The following formulae:
  - circumference of a circle =  $2\pi r$
  - Speed = distance ÷ time

**TIP!** Think about the units of measurement involved.

| Planet  | Distance travelled<br>in 1 orbit | Time taken for 1<br>orbit | Speed of travel<br>(km/hour) |
|---------|----------------------------------|---------------------------|------------------------------|
| Mercury |                                  |                           |                              |
| Venus   |                                  |                           |                              |
| Earth   |                                  |                           |                              |
| Mars    |                                  |                           |                              |
| Jupiter |                                  |                           |                              |
| Saturn  |                                  |                           |                              |
| Uranus  |                                  |                           |                              |
| Neptune |                                  |                           |                              |







# TASK 2

Answer the following questions (it may help if you write them in order, from slowest to faster):

- 1. Which planet is the **fastest?**
- 2. Which planet is the **slowest?**
- 3. What is the **range** of the speeds?

## TASK 3

Draw a scatter graph of the **speed** of planets against **distance from the Sun** in AU.

Do you notice any pattern or correlation?

What might cause any pattern or correlation you see?

#### EXTRA TASK

Choose 2 planets (for example, Mercury and Venus). If they were lined up in the sky, **how long** would it take until they lined up again? Have a go at working it out using what you know from Task 1.